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Leukocyte common antigen-related receptor protein tyrosine
phosphatases—comprising LAR, PTPδ, and PTPσ—are synaptic adhe-
sion molecules that organize synapse development. Here, we iden-
tify glypican 4 (GPC-4) as a ligand for PTPσ. GPC-4 showed strong
(nanomolar) affinity and heparan sulfate (HS)-dependent interac-
tion with the Ig domains of PTPσ. PTPσ bound only to proteolytically
cleaved GPC-4 and formed additional complex with leucine-rich re-
peat transmembrane protein 4 (LRRTM4) in rat brains. Moreover,
single knockdown (KD) of PTPσ, but not LAR, in cultured neurons
significantly reduced the synaptogenic activity of LRRTM4, a post-
synaptic ligand of GPC-4, in heterologous synapse-formation assays.
Finally, PTPσ KD dramatically decreased both the frequency and
amplitude of excitatory synaptic transmission. This effect was re-
versed by wild-type PTPσ, but not by a HS-binding–defective PTPσ
mutant. Our results collectively suggest that presynaptic PTPσ, to-
gether with GPC-4, acts in a HS-dependent manner to maintain
excitatory synapse development and function.
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Synaptic adhesion molecules orchestrate every aspect of syn-
apse development, and certain synaptic adhesion proteins,

called “synapse organizers,” coordinate the structure and function
of mammalian synapses (1, 2). The leukocyte common antigen-
related receptor protein tyrosine phosphatases (LAR-RPTPs),
which comprise three members in vertebrates (LAR, PTPδ, and
PTPσ), have recently emerged as synapse organizers (3). They
mediate presynaptic differentiation via various postsynaptic
ligands (3). All three members of the LAR-RPTP family bind
to netrin-G ligand 3 (4): PTPδ binds to interleukin 1-receptor
accessory protein-like 1 (5); PTPσ binds to TrkC (6); and PTPδ
and PTPσ, but not LAR, bind to the Slit- and Trk-like proteins
(7, 8). However, we do not yet understand the molecular basis
for these various binding modes.
The above-mentioned LAR-RPTP ligands exist only in verte-

brates, arguing that their synaptic adhesion pathways do not ac-
count for all of the evolutionarily conserved synaptic functions of
the LAR-RPTPs. Indeed, studies have shown that invertebrate
LAR-RPTP orthologs (dLAR in Drosophila melanogaster and
PTP-3 in Caenorhabditis elegans) are crucial for nervous system
development and function in such organisms (9). The candidates
for the evolutionarily conserved LAR-RPTP ligands include the
glypican (GPC) family of heparan sulfate proteoglycans (HSPGs),
which are linked to the cell membrane via a glycosylphos-
phatidylinositol (GPI) anchor (10). The GPCs comprise six
members (GPC-1 to -6) in mammals, two [Dally and Dally-like
protein (Dlp)] in fruit fly, and one (GPN-1) in worm (11). In fruit

fly, Dlp and another HSPG syndecan (Sdc) function redundantly
to regulate midline axon guidance (12), but perform distinct
functions in synapse development via binding to dLAR (13, 14).
In vertebrates, GPCs are predominantly expressed during ner-
vous system development, where they serve as guidance cues for
axonal navigation and neuronal migration. Consistent with the
role in axon guidance, GPCs also interact with the axon guidance
molecule Slit (15, 16). Moreover, they regulate several signaling
pathways, including the Wnt, Hedgehog, fibroblast growth fac-
tor, and bone morphogenic protein pathways (17). Furthermore,
GPCs are proteolytically cleaved by a furin-like convertase, gener-
ating two subunits that are attached by one or more disulfide bonds,
although the requirement for this processing for various GPC
functions has not been clearly established (18). We do not yet fully
understand the mechanisms through which GPCs function at
mammalian synapses, but they were recently found to be pre-
synaptic receptors for leucine-rich repeat transmembrane protein 4
[LRRTM4 (refs. 19 and 20; see also ref. 21)]. Given that GPCs
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are GPI-anchored, it seems likely that yet-unidentified pre-
synaptic membrane protein(s) may act as coreceptors for the
GPC/LRRTM4 interaction.
Here, we show that GPC-4 binds PTPσ with high affinity in a

heparan sulfate (HS)-dependent manner. Intriguingly, PTPσ binds
only to cleaved GPC-4, which is highly expressed at an early stage
of brain development, and further associates with LRRTM4 in
postnatal and adult brains. More importantly, the HS-binding
property of PTPσ is functionally critical for the synaptogenic
action of LRRTM4 and for excitatory synaptic transmission in
cultured neurons. Thus, we herein show, to our knowledge, for
the first time that PTPσ is a bona fide presynaptic receptor for
the GPC-4/LRRTM4 synaptic adhesion complex.

Results
GPC-4 Is a Potential Ligand for PTPσ. To identify additional ligand(s)
for LAR-RPTPs in vivo, we chose to search for ligands of PTPσ
because it is the most highly expressed LAR-RPTP in rat brain
(22). We generated an expression vector that encoded the PTPσ
extracellular domains fused to the Fc domain of human Ig
(PTPσ–IgC) and one encoding the human Fc domain alone as
a control protein (IgC; Fig. 1A). We immobilized these Ig fusion
proteins and performed affinity chromatography using rat brain
synaptosomes (Fig. 1B). The proteins from each silver-stained
gel slice that showed a distinct band were purified on immobi-
lized PTPσ and subjected to mass spectrometry (MS) (Fig. 1B).
Among the identified peptides (Table S1), three were derived
from GPC-4 (Fig. 1 C and D and Fig. S1 A and B). Previously,

GPC-2 was shown to bind to PTPσ to promote outgrowth of
dorsal root ganglion neurons (23); however, whether other GPCs
also bind PTPσ has not been determined. First, to validate whether
GPC-4 directly binds to PTPσ on the cell surface, we performed
binding assays between recombinant Ig-fusion proteins of GPC-4
(Ig–GPC-4) and HEK293T cells expressing HA-tagged PTPσ (Fig.
1E). EGFP-fused LRRTM4 (Fig. 1E; ref. 19) and mVenus-fused
LRRTM2 were expressed in HEK293T cells as positive and neg-
ative controls, respectively (Fig. 1E). We found that PTPσ and
LRRTM4 avidly bound to GPC-4, whereas LRRTM2 did not (Fig.
1E). No interaction was observed between LRRTM4 and neu-
rexin-1β recombinant proteins (Fig. S1C), which is consistent with
our previous observation that excess soluble neurexin-1β recom-
binant proteins do not inhibit the synaptogenic activity of LRRTM4
(19). We did, however, observe an interaction between neurexin-1β
and LRRTM4 recombinant proteins (Fig. S1D), suggesting that
these proteins interact with each other under certain conditions
(19). In addition, GPC-4 failed to show binding to any other cell-
surface protein examined, indicating that it forms a specific in-
teraction with PTPσ (Fig. S2). To estimate the binding affinity
between GPC-4 and PTPσ, we incubated HA-PTPσ–expressing
and control HEK293T cells with increasing amounts of Ig–GPC-4
and measured the cell-surface–bound proteins with an HRP-tagged
secondary antibody. After we subtracted the nonspecific binding,
we performed Scatchard analysis, assuming a single independent
binding site for GPC-4 in each PTPσ molecule, and obtained a Kd
of 41.3 ± 3.6 nM (Fig. 1F). Although this finding should be inter-
preted with some caution because the used dimeric GPC-4 ligands
can produce an increased interaction affinity, our results indicate
that GPC-4 binds to PTPσ with high affinity.

PTPσ Ig Domains Are Required for the Interaction with GPC-4. To
determine which PTPσ domains interact with GPC-4, we per-
formed cell-surface binding assays using constructs expressing full-
length PTPσ (PTPσ-full), its Ig domains alone (PTPσ–Ig), or an Ig-
domain-deleted protein (PTPσ–ΔIg) (Fig. 2A). IgC–GPC-4 bound
to HEK293T cells expressing PTPσ-full and -Ig, but not those
expressing PTPσ–ΔIg (Fig. 2B). Recent studies have established
that alternative splicing events at the Ig domains of LAR-RPTPs
determine their binding affinity toward postsynaptic ligands (3, 5,
6). Thus, we examined whether the GPC-4/PTPσ interaction is
regulated by similar alternative splicing inserts (Fig. 2C). GPC-4
strongly bound to all four splice variants of PTPσ and three
splice variants of LAR (Fig. 2 C and D), but showed weaker
binding to all four splice variants of PTPδ (Fig. 2E). To assess the
affinities of these GPC-4 interactions with PTPσ variants, we
expressed PTPσ variants on the surfaces of HEK293T cells and
estimated the binding affinity of different PTPσ isoforms (Fig. 2F
and Fig. S3A). All PTPσ variants displayed nanomolar affinities
comparable to that of the PTPσ-full (Fig. 2F and Fig. S3A).
Moreover, all LAR and PTPδ variants bound to GPC-4 re-
combinant proteins with similar nanomolar affinities (Fig. S3 B and
C). These data suggest that alternative splicing of the LAR-RPTPs
does not regulate their binding affinity for GPC-4 per se.

The GPC-4/PTPσ Interaction Occurs in the Same Cell Membrane. Our
observation of a GPC-4/PTPσ interaction in cell-surface binding
assays (Figs. 1 and 2) raised the possibility that such binding
could mediate trans-cellular adhesion, as observed in synapses.
Therefore, we performed cell-adhesion assays (Fig. 3 A and B).
We prepared L cells (red fluorescent cells) expressing DsRed
alone (control) or coexpressing DsRed with PTPσ, and L cells
(green fluorescent cells) expressing EGFP alone (control) or
coexpressing EGFP with GPC-4 or TrkC. These cells were mixed
and incubated for up to 60 min, and cell aggregation was mea-
sured (Fig. 3B). Quantification revealed that GPC-4–expressing
cells did not form any aggregated clumps with PTPσ-expressing
cells (Fig. 3 A and B). In contrast, TrkC-expressing cells formed

Fig. 1. Affinity purification of GPC-4 as a PTPσ-ligand in rat brain. (A)
Coomassie blue-stained gel of recombinant Ig-control and Ig–PTPσ fusion
proteins used for affinity chromatography. (B) Solubilized rat synaptosomes
were subjected to pull-down assays with IgC or Ig–PTPσ. A blue box indicates
a specific band unique to the Ig–PTPσ-bound fraction. Asterisks indicate the
cleaved Ig–PTPσ proteins or IgC heavy chain. (C and D) Total ion chromato-
gram of a liquid chromatography (LC) separation of Ig–PTPσ-bound eluates
(C). (D) Extracted ion chromatograms of ion m/z 972.03 and 517.28 from
PTPσ (34.05 min) and GPC-4 (24.88 min). (E) Cell-surface binding assays.
HEK293T cells expressing HA-PTPσ, LRRTM4–EGFP, or LRRTM2–mVenus were
incubated with control IgC or Ig–GPC-4 and analyzed by immunofluores-
cence imaging for Ig-fusion proteins (red) and HA/mVenus (green). [Scale
bar: 15 μm (applies to all images).] (F) Saturation binding of Ig–GPC-4 to PTPσ
expressed in HEK293T cells. Inset shows a Scatchard plot generated by linear
regression of the data, with the Kd calculated from three independent ex-
periments. Data are presented as means ± SEM.
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strong aggregations with PTPσ-expressing cells, which is consistent
with their reported trans-interaction (ref. 6; Fig. 3 A and B). These
data suggest that the GPC-4/PTPσ interaction mainly occurs in
the cis-configuration.

PTPσ Requires HS to Interact with GPC-4. PTPσ was previously
shown to bind the HS chains of HSPGs, such as agrin and col-
lagen XVIII, and to colocalize with HSPGs on sensory neurons
(23, 24). Therefore, we next examined whether the HS chains of
GPC-4 mediate their binding to PTPσ. We first generated a
PTPσ construct (PTPσ–AAAA) in which four lysines of the first
Ig domain (K68, K69, K71, and K72) were all replaced with
alanines to abrogate HS binding (Fig. 3C and ref. 23). We then
expressed either PTPσ wild-type (WT) or PTPσ–AAAA in
HEK293T cells, treated the cells with heparinase III (hep III;
1 U/mL) for 2 h to remove the HS chains from PTPσ, and
stained the cells with a monoclonal 3G10 antibody that reacts
only with hep III-treated HS chains (25). We found that cells

expressing PTPσ WT, but not PTPσ–AAAA, reacted to the
3G10 antibody (Fig. 3D). To further examine whether the HS
chains attached to PTPσ are required for the interaction with
GPC-4, we treated PTPσ WT-expressing HEK293T cells with
hep III and then used hep III-treated Ig–GPC-4 in cell-surface
binding assays (Fig. 3E). Hep III treatment drastically reduced
the binding of hep III-treated Ig–GPC-4 to PTPσ (Fig. 3E),
suggesting the HS chains of PTPσ are required for this inter-
action. Consistently, PTPσ–AAAA failed to bind to GPC-4 (Fig.
3E). Whether the Ig1 domain of PTPσ was necessary and suffi-
cient for GPC-4 binding could not be demonstrated because of
poor surface transport of the PTPσ Ig1 construct (Fig. S4 A and
B). Together, these data unequivocally demonstrate that the HS-
binding ability of PTPσ is required for its interaction with GPC-4
(Fig. 3E). Lastly, because many cell-adhesion interactions, in-
cluding those mediated by neurexins/neuroligins or neurexins/
LRRTM2, require extracellular Ca2+ ions (26, 27), we tested
whether the GPC-4/PTPσ interaction requires Ca2+. However,
we found that the Ca2+ chelator EGTA did not influence their
binding (Fig. 3F). This finding suggests that the interaction of
PTPσ with GPC-4 is Ca2+-independent, analogous to the inter-
actions of PTPσ with other ligands (4, 6).

PTPσ Interacts with Cleaved GPCs. To further corroborate the GPC-
4/PTPσ interaction (Figs. 1–3), we performed pull-down assays
using Ig–GPC-4 or IgC (negative control) against lysates from
HEK293T cells expressing HA-PTPσ, HA-PTPσ AAAA, HA-
LAR, HA-PTPδ, or NL1–mVenus. Ig–GPC-4 captured all three
LAR-RPTP isoforms, but not PTPσ–AAAA or NL1 (Fig. 3G).
We also used Ig–PTPσ or IgC to conduct pull-down assays with
HEK293T cells expressing HA-tagged GPCs. The GPC-1 and -5
vectors were not efficiently processed in the HEK293T cells, be-
cause no bands were observed around ∼37 kDa in HA–GPC-1– or
HA–GPC-5–transfected cell lysates; in contrast, the other GPCs
showed both ∼65-kDa bands representing uncleaved species and
∼37-kDa bands representing cleaved species (Fig. 3H). Our pull-
down assays showed that the immobilized Ig–PTPσ effectively
bound to cleaved GPCs, but not uncleaved GPCs (Fig. 3H). We
also confirmed this finding using Ig–GPC-4 351-AISA (in which
the furin-like convertase cleavage consensus R351ISR354 of GPC-4
was changed to A351ISA354), showing that the uncleaved recom-
binant GPC-4 proteins do not interact with PTPσ (Fig. S4C; see
also Fig. S5). This binding property differs from that of the GPC-4/
LRRTM4 interaction, where both uncleaved and cleaved GPCs
bind to LRRTM4 (Fig. S4D) (19). Surprisingly, SDC-2 and -3,
members of another HSPG family, failed to interact with PTPσ
(Fig. S5A), suggesting that LAR-RPTPs use an evolutionarily
distinct strategy for mediating synaptic adhesion; whereas dLAR
binds both GPCs and SDCs, mammalian LAR-RPTPs prefer
GPCs (28). Consistent with our above-described results (Fig. 3E),
a GPC-4 mutant [GPC-4 AAA, in which the HS-attachment sites
of GPC-4 (S494/S495/S500) were all mutated; ref. 19] showed no
interaction with PTPσ in pull-down assays (Fig. 3H). We also
observed a significant degree of enrichment of GPC-4, LRRTM4,
and TrkC—but not NL1 or GluA1 (additional negative controls)—
in the PTPσ-bound fraction of detergent-solubilized postnatal day 7
(P7) and P42 rat brain membrane fractions in pull-down assays
using Ig–PTPσ fusion proteins (Fig. S5B). In addition, LRRTM4
antibodies coprecipitated with GPC-4 and PTPσ in coimmunopre-
cipitation assays performed on P7 rat brain membrane fractions
(Fig. S5C). Notably, proteolytic cleavage of GPC-4 was de-
velopmentally regulated, exhibiting decreased cleavage during
postnatal development (Fig. S5D), and only cleaved GPC-4 formed
complexes and cofractionated with PTPσ in rat brains (Fig. S5 B
and E), in accordance with the results from pull-down assays in
HEK293T cells (see also Fig. 3H). Moreover, we showed that Ig–
PTPσ bound to LRRTM4 expressed in HEK293T cells in the
presence of GPC-4 WT, but not in the presence of GPC-4 AAA

Fig. 2. Analysis of the GPC-4–binding domain of LAR-RPTPs. (A) Diagrams of
the PTPσ vectors used in the cell-surface binding assays. F, fibronectin type III
(FNIII) domains; D1, phosphatase domain 1 (catalytically active); D2, phos-
phatase domain 2 (catalytically inactive). (B) HEK293T cells expressing HA-
tagged PTPσ-full (a splice variant of PTPσ that lacks in insert in splice sites
MeA and MeB), PTPσ–Ig, or PTPσ–ΔIg were incubated with IgC or IgC–GPC-4
and analyzed by immunofluorescence imaging for the Ig-fusion proteins
(red) and surface-exposed HA-PTPσ proteins (green). (C–E) HEK293T cells
expressing the indicated splice variants of LAR-RPTPs Ig1–3 were incubated
with IgC or Ig–GPC-4 and analyzed by immunofluorescence for the Ig-fusion
proteins (red) and surface-exposed HA-tagged LAR-RPTPs (green). [Scale bars,
B–E: 10 μm (applies to all images).] (F) Saturation binding of Ig–GPC-4 to
a subset of PTPσ splice variants (PTPσ Ig and PTPσ IgMeA) expressed in HEK293T
cells. See also Fig. S3 for the other splice variants of PTPσ. Data are presented as
means ± SEM.
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(Fig. S5F). These results suggest that PTPσ specifically forms
complexes containing GPCs and LRRTM4 (inferred through
GPCs) in vivo.

PTPσ Is Required for LRRTM4-Mediated Presynaptic Differentiation in
Cultured Neurons. Based on the direct interaction of GPCs with
LAR-RPTPs (this work), the direct interaction of GPCs with
LRRTM4 (19, 20) and the biochemical nature of GPCs as GPI-
anchored proteins, we hypothesized that LAR-RPTPs might be
functional presynaptic receptors for LRRTM4. To directly address
this hypothesis, we used previously characterized lentiviral short-
hairpin interference RNAs (shRNAs) against PTPσ (sh-PTPσ) or
LAR (sh-LAR) [ref. 8; see also Fig. S5G for validation of PTPσ
knockdown (KD) at the protein level]. Cultured hippocampal
neurons were infected with control lentivirus (control) or lentivi-
ruses expressing sh-LAR or -PTPσ, or coinfected with lentivi-
ruses expressing LAR-KD and PTPσ-KD (sh-LAR/sh-PTPσ), and
various heterologous synapse-formation assays were performed
with infected neurons and HEK293T cells expressing LRRTM2,
LRRTM4, or EGFP alone (control) (Fig. 4). PTPσ-KD alone, but
not LAR-KD alone, significantly reduced the synaptogenic activity
of LRRTM4, but not that of LRRTM2 (Fig. 4). These data are
consistent with a previous report that LRRTM2 requires neu-
rexins for its synaptogenic activity (29). Reexpression of PTPσWT
(+PTPσ WT) completely reversed the deficit in the synapse-for-
mation activity of LRRTM4 observed in LAR/PTPσ-deficient
neurons (Fig. 4), whereas reexpression of PTPσ–AAAA (+PTPσ–
AAAA) did not. The data suggest that the HS-dependent inter-
actions of PTPσ with GPCs are essential for inducing the pre-
synaptic differentiation elicited by LRRTM4 (Figs. 3E and 4). We
confirmed our previous observation that GPC-4 KD led to a sig-
nificant deficit in the synaptogenic activity of LRRTM4 (19) (Fig.
S6 A and B). This impairment of LRRTM4 activity was rescued by
reexpression of GPC-4 WT, but not by expression of GPC-4 351-
AISA (Fig. S6 A and B), consistent with our pull-down data
showing that only cleaved GPC-4 bound to PTPσ (Fig. 3). These
results collectively suggest that PTPσ acts via GPCs to function as
a presynaptic receptor for LRRTM4.

The HS-Binding Sequence of PTPσ Is Essential for Excitatory Synaptic
Transmission in Cultured Neurons. Most of the LAR-RPTP ligands
have been demonstrated to cluster presynaptic vesicles and
neurotransmitter release machineries by directly interacting with
individual LAR-RPTP isoforms in the axons of cocultured neu-
rons when expressed in heterologous cells, suggesting that LAR-
RPTPs act as hubs for presynaptic organization (3). This notion,
together with the failure of PTPσ–AAAA to restore the syn-
aptogenic activity of LRRTM4 (Fig. 4), prompted us to ask
whether the HS-binding property of LAR-RPTPs is also involved
in some presynaptic functions (e.g., neurotransmitter release or
synaptic transmission). Strikingly, no previous study had examined
whether LAR-RPTPs themselves are involved in the presynaptic
functions of mammalian neurons. To address these questions, we
first monitored the paired-pulse ratio (PPR), a measure that is
routinely used to identify changes in the neurotransmitter release
probability (30). We first infected cultured hippocampal neurons
with control lentiviruses (control) or coinfected them with lentivi-
ruses expressing sh-LAR/sh-PTPσ and measured the PPR, which
was calculated by delivering two stimuli 20 ms apart and then di-
viding the amplitude of the second excitatory postsynaptic current
(EPSC2) by the amplitude of the first EPSC (EPSC1). There was no
significant change in PPR between control and LAR/PTPσ-
deficient neurons over a range of interstimulus intervals (20–200
ms), suggesting that LAR and PTPσ do not directly regulate the
probability of neurotransmitter release at excitatory synapses (Fig.
S7 A and B). We next recorded miniature ESPCs (mEPSCs) in
the cultured hippocampal neurons (Fig. 5). We infected neurons
with control lentiviruses expressing EGFP (control) only, sh-LAR

Fig. 3. PTPσ interacts with GPC-4 in a HS-dependent manner. (A and B)
Representative images (A) and quantification of data (B) from cell-adhesion
assays. HEK293T cells expressing EGFP alone (control) or coexpressing PTPσ
with EGFP were mixed with HEK293T cells expressing DsRed alone (control)
or coexpressing GPC-4 or TrkC with DsRed. The cells were imaged, and aggre-
gations were quantified. [Scale bar: 100 μm (applies to all images).] 3*P < 0.001.
(C) Schematic diagrams of PTPσ constructs used in D and E. (D) HEK293T cells
were transfected with the indicated PTPσ vectors and treated with vehicle
(+veh) or 1 U/mL heparinase III (+hep III). The cells were then stained with
HA antibody (green) to detect surface-exposed PTPσ (red) under nonper-
meabilized conditions. They were then permeabilized and stained with the
3G10 antibody. (E) Transfected HEK293T cells were treated with vehicle or
hep III, incubated with IgC or IgC–GPC-4, and then analyzed by double-
immunofluorescence microscopy for Ig-fusion proteins (red) and surface-
exposed HA-PTPσ (green). (F ) As in E, except that cells were also incubated
with 10 mM EGTA (+EGTA). [Scale bars, D–F: 10 μm (applies to all images).]
(G and H) Pull-down assays were performed with IgC and Ig–GPC-4 (G) or
Ig–PTPσ (H) by using HEK293T cells expressing the indicated vectors (input:
1% of total). The numbers on the left indicate molecular mass markers (kDa).
Immunoblot analyses showed that GPCs are expressed in two positions:
a ∼65-kDa band representing the full-length HA–GPCs (uncleaved) and a
∼37-kDa band representing the N-terminal proteolytic fragment (cleaved).
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only, sh-PTPσ only, sh-LAR and -PTPσ, or sh-LAR and -PTPσ
with coexpression of either PTPσ WT or PTPσ–AAAA, and
recorded mEPSCs (Fig. 5). Remarkably, sh-PTPσ, but not sh-
LAR, significantly decreased the frequency and amplitude of
mEPSCs, strengthening our previous supposition that PTPσ is
required for excitatory synapse development (8). This reduction in
mEPSC frequency and amplitude among PTPσ- and LAR/PTPσ-
deficient neurons was completely reversed by the reexpression of
PTPσ WT. Although PTPσ–AAAA rescued mEPSC amplitude, it
failed to recover the mEPSC frequency (Fig. 5). To support these
electrophysiological data, we used an immunocytochemical ap-
proach to determine whether PTPσ KD alters the excitatory
synapse structure in cultured neurons. We found that PTPσ KD
significantly decreased excitatory synapse density, as determined
by VGLUT1 staining, an effect that was completely rescued by
reexpression of PTPσ WT, but not PTPσ–AAAA (Fig. S7 E and
F). The experimental conditions did not affect the intrinsic prop-
erties of the infected neurons, because we observed no change in
the membrane capacitance (Cm) or input resistance (Rm) (Fig. S7
C andD). Our data suggest that PTPσ maintains the structure and
function of excitatory synapses in a HS-binding–dependent manner.

Discussion
In the present study, we explored the significance of interactions
between LAR-RPTP and GPC synaptic proteins in mammalian
neurons. It is likely that these interactions are dictated by the
availability of HS in neuronal membranes (Fig. 3), but we clearly
demonstrated that the HS-binding activity of PTPσ is required
for these proteins to act as the presynaptic receptor for a post-
synaptic adhesion molecule LRRTM4 and as a key element in
excitatory synaptic transmission (Figs. 4 and 5). An unusually
large number (>25) of different HSPGs (31) that are expressed
in the nervous system have been implicated in many aspects of
neural development, including neurogenesis, axon elongation
and pathfinding, and synapse formation (32). Most notably,

agrins identified in neuromuscular synapses have been demonstrated
to mediate acetylcholine receptor clustering (33). In addition to
agrins, other neural proteoglycans, such as aggrecan, neurocan,
brevican, testicans, SDCs, and GPCs, have been identified and
shown to function in the nervous system (32). In recent years,
SDCs and GPCs in particular have emerged as crucial regulators
of cell migration and axon guidance in flies through binding to
LAR (14, 28). However, their roles in mammalian synapses have
only begun to be elucidated (19, 20, 34). In the present study, we
found that mammalian GPCs, but not SDCs, bind to mammalian
LAR-RPTPs (Fig. S5A). This is in stark contrast to the prevailing
concept in flies that both Dally-like and SDCs bind to dLAR,
suggesting that mammals and flies use a different set of ligand–
receptor complexes to regulate nervous system development.
Moreover, LRRTM4 exists only in vertebrates and not in
invertebrates, strongly supporting the interpretation that mam-
mals use a unique synaptic adhesion complex. Recently, GPC-4
and -6, as astrocyte-secreted signaling molecules, were demon-
strated to promote excitatory synapse formation through re-
cruitment of the AMPA receptor subunit, GluA1 (34). It is
possible that a PTPσ/GPCs/LRRTM4 complex might control
AMPA receptor function. In support of this supposition,
LRRTM4 was recently annotated as an AMPA receptor con-
stituent in a multiepitope proteomic analysis (35). Moreover,
presynaptic neurexin-3 was recently reported to control post-
synaptic AMPA receptor trafficking through direct binding to
LRRTM2 (36); thus, it is probable that presynaptic PTPσ also
does so by behaving similarly. Directly exploring the function of
PTPσ/GPCs/LRRTM4 synaptic adhesion pathways in vivo will
ultimately require systematic characterization of conditional
knockout mice lacking PTPσ and/or GPCs. However, the in-
volvement of other GPC isoforms in brain functions, par-
ticularly synapse development, has not been extensively ex-
plored. We examined the expression patterns of mRNAs
encoding all six GPCs during several different developmental
stages in mice (Fig. S8). We found that GPC-1 and -4 are the
major isoforms in the hippocampus (Fig. S8). Intriguingly, GPC-4
mRNA was found in the dentate gyrus, whereas GPC-1 mRNA
signals were stronger in the CA3 region of hippocampus, sug-
gesting distinct distribution patterns of individual GPC isoforms
in several brain regions (Fig. S8). The functional regulation of
synaptic adhesion proteins by carbohydrate molecules, as re-
ported in this work, is not unprecedented. For example, posttrans-
lational modification of neural cell adhesion molecule (NCAM)
by the addition of polysialic acid (PSA) to the fifth Ig domain

Fig. 4. PTPσ is a functional coreceptor for GPC-4 in mediating LRRTM4-
induced presynaptic differentiation. (A and B) Representative images (A)
and quantification (B) of the heterologous synapse-formation activities of
LRRTM4 and LRRTM2. Neurons were infected with lentiviruses expressing sh-
Control, -LAR, or -PTPσ only or were coinfected with lentiviruses expressing
PTPσ-KD/LAR-KD (sh-LAR/sh-PTPσ), LAR/PTPσ shRNA plus PTPσWT (+PTPσWT
rescue), or LAR/PTPσ shRNA plus PTPσ AAAA (+PTPσ AAAA rescue). The
infected neurons were then cocultured for 2 d with HEK293T cells expressing
EGFP alone (control), LRRTM4–EGFP (LRRTM4), or LRRTM2–mVenus (LRRTM2)
and stained with antibodies against EGFP (blue) and synapsin (red). The synapse-
forming activity was quantified by measuring the ratio of synapsin staining
to EGFP fluorescence. The statistics shown in D were determined by ANOVA
Tukey’s test. 2*P < 0.01; 3*P < 0.001. [Scale bar: 25 μm (applies to all images).]
N numbers are the number of HEK293T cells as indicated in the bar graphs.

Fig. 5. PTPσ is required for HS-binding–dependent excitatory synaptic
transmission in cultured hippocampal neurons. (A) Representative traces of
mEPSCs recorded at days in vitro (DIV) 14–16 in cultured hippocampal neu-
rons infected at DIV3 with lentiviruses expressing sh-Control, -LAR, or -PTPσ
only or were coinfected with lentiviruses expressing sh-LAR/sh-PTPσ, sh-LAR/
sh-PTPσ plus PTPσ WT (+PTPσ WT rescue), or sh-LAR/sh-PTPσ plus PTPσ AAAA
(+PTPσ AAAA rescue). (B and C) Summary graphs of the frequencies (B) and
amplitudes (C) of mEPSCs from the infected neurons. The data shown in B
and C are presented as means ± SEM. *P < 0.05 (Student’s t test). N values
indicated in bar graphs correspond to the number of neurons.
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abrogates the homophilic binding properties of the protein and
reduces cell migration and invasion. Also, removal of PSA from
NCAM by enzymatic digestion has been shown to abolish syn-
aptic plasticity (37), suggesting that structural alterations pro-
duced by posttranslational modification of synaptic adhesion
molecules is crucial for synaptic function. The importance of HS
has been directly shown in knockout mice deficient for HS syn-
thesis; these mice exhibit malformations in specific regions of the
brain that reflect an altered fibroblast growth factor distribu-
tion, decreased cell proliferation, and disrupted axon path-
finding (38). Moreover, multiple signaling pathways involved
in axon guidance, such as Slit–Robo and Netrin–Frazzled/DCC
(deleted in colorectal cancer), require HS (39). In addition, syn-
aptic transmission at the fly neuromuscular junction is differen-
tially affected by KD of two different enzymes that regulate HSPG
sulfation (40), suggesting that HS modifications are important for
synapse development. Our findings suggest that the ability of
PTPσ to bind to HS initiates multifaceted downstream signaling
pathways in presynaptic neurons to control distinct aspects of
excitatory synapse development. One major remaining question is
how HS-bound PTPσ contributes to organizing general synapse
development. HS and its analogs reportedly induce the oligo-
merization of PTPσ in solution, stabilize PTPσ oligomers via sul-
fation, and promote neurite extension (23). These findings, to-
gether with our present work, suggest that HS-bound presynaptic

PTPσ induces formation of multimeric complexes with various
postsynaptic ligands, thereby contributing to dynamic modulation
of presynaptic organization. In addition, HS-bound PTPσ may
preferentially elicit activation of specific synaptic adhesion path-
way(s) via distinct cis- and/or trans-synaptic ligands.

Methods
Expression constructs and antibodies used in this study are described in
detail in SI Methods. All cell biological assays were performed as described
(27, 41). Generation of lentiviral shRNA plasmids, production, and char-
acterization of recombinant lentiviruses were performed as described (42)
and are detailed in SI Methods. Electrophysiology recordings in cultured
hippocampal neurons were performed as described (43). See SI Methods
for more details.
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